

Tensor decomposition for multiway data mining

simulamet

 \sim

Low rank matrix factorisation methods decompose a matrix into a sum of low rank components

Low rank matrix factorisation methods decompose a matrix into a sum of low rank components

The components can give meaningful information about the underlying structure of the data

Components for the movie-mode can reveal movie genres

Components for the user-mode can identify networks of users with similar taste in movies

One potential matrix factorisation

 $\mathbf{X} = \mathbf{A}\mathbf{B}^{\mathsf{T}}$

One potential matrix factorisation

 $\mathbf{X} = \mathbf{A}\mathbf{B}^{\mathsf{T}}$

Multiply with identity matrix

 $\mathbf{X} = \mathbf{A}(\mathbf{M}\mathbf{M}^{-1})\mathbf{B}^{\mathsf{T}}$

One potential matrix factorisation

 $\mathbf{X} = \mathbf{A}\mathbf{B}^{\mathsf{T}}$

Multiply with identity matrix

 $\mathbf{X} = \mathbf{A}(\mathbf{M}\mathbf{M}^{-1})\mathbf{B}^{\mathsf{T}}$

Reorder using transposition rules

 $\mathbf{X} = (\mathbf{A}\mathbf{M})(\mathbf{B}\mathbf{M}^{-\mathsf{T}})^{\mathsf{T}}$

One potential matrix factorisation

 $\mathbf{X} = \mathbf{A}\mathbf{B}^{\mathsf{T}}$

Multiply with identity matrix

 $\mathbf{X} = \mathbf{A}(\mathbf{M}\mathbf{M}^{-1})\mathbf{B}^\mathsf{T}$

Reorder using transposition rules

 $\mathbf{X} = (\mathbf{A}\mathbf{M})(\mathbf{B}\mathbf{M}^{-\mathsf{T}})^{\mathsf{T}}$

We obtain transformed components

We can get uniqueness by imposing orthogonality as in PCA

$\mathbf{A}^{\mathsf{T}}\mathbf{A} = \mathbf{I} \quad \mathbf{B}^{\mathsf{T}}\mathbf{B} = \mathbf{I}$

We can get uniqueness by imposing orthogonality as in PCA

A tensor is a *higher-order* generalisation of a matrix

PARAFAC extends matrix decompositions to tensor-data

PARAFAC extends matrix decompositions to tensor-data

PARAFAC extends matrix decompositions to tensor-data

To find the PARAFAC components, we solve a nonlinear least squares problem

This formulation makes it possible to constrain the model to obtain non-negative components

We can also handle missing data

PARAFAC can discover e-mail topics and their popularity

[Bader et al. (2008)]

PARAFAC has also been used to discover networks of neural connectivity

Subject distribution: 90 Healthy controls 53 Patients

67454 voxels

PARAFAC can also be used to discover networks of neural connectivity in the brain

The time-mode component, shows the networks' activation profile as a function of time

<u>[Roald et al. (2020)]</u>

Which makes PARAFAC a good tool to analyse EEM-data with scattering artefacts

[Lawaetz et al. (2011)]

Weighted PARAFAC has also been used for recommendation engines

The multilinearity of PARAFAC may be too restrictive for time-evolving data

PARAFAC2 allows the components in one mode to evolve across another mode

PARAFAC2 allows the components in one mode to evolve across another mode

However, the components obtained with PARAFAC2 were noisier and less stable than those obtained with PARAFAC

 $\mathbf{X}_k pprox \mathbf{A} \mathbf{D}_k \mathbf{B}_k^{\mathsf{T}}$ $\mathbf{B}_{k_1}^\mathsf{T}\mathbf{B}_{k_1} = \mathbf{B}_{k_2}^\mathsf{T}\mathbf{B}_{k_2}$

 $\mathbf{X}_k \approx \mathbf{A} \mathbf{D}_k \mathbf{B}_k$ $\mathbf{B}_{k_1}^\mathsf{T}\mathbf{B}_{k_1} = \mathbf{B}_{k_2}^\mathsf{T}\mathbf{B}_{k_2}$

 $\mathbf{X}_k \approx \mathbf{A} \mathbf{D}_k \mathbf{B}_k^{\mathsf{T}}$

 $\mathbf{B}_{k_1}^\mathsf{T}\mathbf{B}_{k_1} = \mathbf{B}_{k_2}^\mathsf{T}\mathbf{B}_{k_2}$

 $\mathbf{X}_k pprox \mathbf{A} \mathbf{D}_k \mathbf{B}_k^{\mathsf{T}}$ $\mathbf{B}_{k_1}^\mathsf{T} \mathbf{B}_{k_1} = \mathbf{B}_{k_2}^\mathsf{T} \mathbf{B}_{k_2}$

 $\min_{\substack{\mathbf{A},\mathbf{B}_1,\ldots,\mathbf{B}_K,\mathbf{C}\\\mathbf{B}_{k_1}^\mathsf{T}\mathbf{B}_{k_1}=\mathbf{B}_{k_2}^\mathsf{T}\mathbf{B}_{k_2}}} \left(x_{ijk} - \sum_r a_{ir} b_{kjr} c_{kr} \right)^2$

We reformulated the loss function to allow for regularisation of all components

$$\begin{array}{l} \underset{\left\{\mathbf{B}_{k}, \mathbf{Z}_{\mathbf{B}_{k}}, \mathbf{Y}_{\mathbf{B}_{k}}\right\}_{k \leq K}}{\text{minimize}} & \sum_{k=1}^{K} \left\| \mathbf{A} \mathbf{D}_{k} \mathbf{B}_{k}^{\mathsf{T}} - \mathbf{X}_{k} \right\|_{F}^{2} + g_{\mathbf{B}} \left(\mathbf{Z}_{\mathbf{B}_{k}} \right) \\ \text{s.t.} & \mathbf{B}_{k} = \mathbf{Z}_{\mathbf{B}_{k}}, \qquad \forall k \\ & \mathbf{B}_{k} = \mathbf{Y}_{\mathbf{B}_{k}}, \qquad \forall k \\ & \mathbf{Y}_{\mathbf{B}_{k}}^{\mathsf{T}} \mathbf{Y}_{\mathbf{B}_{k}} = \Phi, \qquad \forall k \end{array}$$

Smoothness regularisation leads to less noisy brain-activation maps when applied to fMRI data

Smoothness regularisation leads to less noisy brain-activation maps when applied to fMRI data

PARAFAC2 is also useful for a variety of applications where one mode varies across another

PARAFAC2 is also useful for analysing electronic health records, where the patients have different number of visits

[<u>Afshar et al. (2018)]</u>

Hospital Visits (I_k)

We tested the framework on a variety of real and simulated datasets

One of the setups used shifting piecewise-constant components

The standard PARAFAC2 algorithm yielded noisy components

While the regularised PARAFAC2 model captured the components much better

While the regularised PARAFAC2 model captured the components much better

(b) AO-ADMM (non-negativity on all modes).

(b) AO-ADMM (non-negativity on all modes).

(b) AO-ADMM (non-negativity on all modes).

arXiv: 2110.01278

I am currently working on implementing my framework as a Python package that I plan to publish as a software paper

The Jupyter notebooks are available on GitHub and can be run locally or online with Binder

https://github.com/MarieRoald/nmbu-tensor-seminar-2021

Solution States Stat

https://mybinder.org/v2/gh/MarieRoald/nmbu-tensor-seminar-2021/HEAD

We have seen that tensor decomposition methods:

utilise the multi-way structure of the data provide interpretable components can handle missing data naturally

simulamet
We have seen that tensor decomposition methods:

utilise the multi-way structure of the data provide interpretable components can handle missing data naturally

simulamet

Questions?